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Under consideration is the effect of nonideality of the components in a gas mix- 
ture on the process of their separation by thermal diffusion. It is demonstrated 
that in the expressions for the heat flux and the mass flux, the thermodiffusion 
ratio and the characteristic of diffusional thermal conductivity the effect of 
nonideality appears in the heat of mixing. 

The temperature gradient in a nonisothermal system consisting of several components ef- 
fects, according to experimental evidence, a transport of material by causing a "separation" 
of components in the originally homogeneous mixture, i.e., causing the space distribution of 
their concentrations to become nonuniform. This phenomenon is called thermal diffusion. 

Although many studies on this subject have been published in Soviet and foreign technical 
literature, the mechanism of thermal diffusion in gas mixtures still remains not entirely 
understood, even in regard to mixtures of monatomic gases. 

The phenomenon of thermal diffusion ranks specially among other transport phenomena such 
as heat conduction and diffusion [i], being called a second-order effect on account of its 
strong dependence on the nature of intermolecular interactions and, furthermore, hypothetically 
vanishing in mixtures of ideal gases [2]. 

We will examine available mathematical models of the thermal diffusion process: three 
variants of the elementary molecular-kinetic theory, a rigorous molecular-kinetic theory, and 
two variants of the thermodynamic theory. 

The elementary molecular-kinetic theory describes the transport of any substance with a 
Maxwell velocity distribution of molecules in a steady-state system, i.e., in an ideal gas 
(ideal mixture). On the other hand, this theory also operates with a concept which pertains 
to the model of a molecule as a solid sphere and, accordingly, admits the concept of the mean 
free path for molecules so that the given gas (gas mixture) ceases to be ideal. In this way 
the mathematical model of the transport process based on the elementary molecular-kinetic 
theory contains certain contradictions. 

The concept of an ideal gas has great significance in any study of the transport pro- 
cesses. An ideal gas is an array of mathematical (imaginary) points of infinitesimally small 
dimensions. There are no interaction forces between such molecules, which makes an ideal gas 
a mathematical abstraction. 

An ideal gas can be regarded as an array of particles whose interaction energy is small 
in comparison with their kinetic energy. The interaction energy is small here not because of 
the weak force interaction between molecules but because of the relatively infrequent inter- 
action events, and yet these events establish a thermodynamic equilibrium in the gas. 

The degree of rarefaction of a gas is characterized by the parameter e = nr~, where re 
denotes the diameter of molecules, and thus interaction occurs when the distance between their 
centers decreases to re. 

When e << i, then the gas is said to be rarefied. An ideal gas is the extreme case of a 
rarefied gas. Interaction of molecules in it does not contribute anything at all to the 
thermodynamic functions. In the expressions for the thermodynamic functions there appear 
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additional terms proportional to the density parameter s for a rarefied gas which drop out 
for an ideal gas. 

The kinetic theory of transport characteristics accounts basically for the occurrence 
of collisions but not for their nature so that the kinetic characteristics are determined 
primarily by the presence of certain forces acting between molecules and only secondarily by 
the nature of those forces [3]. 

There are three varlan=s of the elementary molecular-kinetic theory of thermal diffusion: 
the F~rth theory [4], the Laranjeira theory [5-7], and the Whalley--Winter theory [8]. All 
three theories describe the steady-state thermal diffusion, being based on the condition 
~ha~ Vp = 0. The end result of these theories is =he rela=ion 

ut  - -  ~z 1 D t 2  -1- D ,  - T Oz  
x~x~ - O z -  T az x~x, \ az + ~" - -  ' 

while the thermodiffusion ra=io is defined as 

Ti'~-- ct~ , 

~ ) a ix , - -a2x2  xix2; 
K T : - -  1 . . . .  b t x ~ + b 2 x ~ + b l 2 x i z  z 

according to the F~rth theory, 

~----(1+ a) Ti, 
1 - -  a x2S2 - -  xtSt  

according to the Laranjeira theory, and 

~ = 1 - -  bix~ -b b2x~ -b bt~xtx2 xtx~ 

according to the Whalley--Winter theory. 

Within =he framework of these three variants of the elementary molecular-kinetic theory 
there follows a direct relation between the thermodlffusion ratio and the characteristic of 
the intermolecular interaction process. 

In an analysis of =he fundamental premises of these theories, there arises the same one 
question throughout: what intermolecular interactions can occur in an ideal gas of solid 

spheres? A gas of solid spheres is ideal when T-+ oo, lira B (T) = -- lira 2~N [ (e-~ (r)/hT__ ])r2dr_+ O, 
0 

but then n § 0 and this is a Knudsen gas, a gas in which no thermal diffusion occurs. This 
statement agrees with the fundamental premises of =he Chapman theory [9], according to which 
in a mixture of gases in the steady state under cons=ant pressure =here is no concentration 
gradient in the direction of the temperature gradient. 

It has been demonstrated in an earlier study [i0] that it is not possible to construct 
an eiemen=ary molecular-kinetic theory of thermal diffusion using the concept of only one 
length of =he mean free path for molecules. According to that study, the expression for the 
flux of particles of =he first kind is 

which corresponds to the steady state of a Knudsen gas, for which p//~= const and (T/n i 
~ni/3T + i/2) = 0. 

It is noteworthy that the impossibility of rigorously constructing an elementary molec- 
ular-kinetic theory of thermal diffusion for ideal mixtures has, evidently, led other authors 
[4-8] to the necessity of introducing two lengths of the mean free path for molecules. 
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In the rigorous molecular-kinetic theory of gases there is widely used the concept of 
two lengths of the mean free path for molecules [ii], inasmuch as it is necessary to satisfy 
=he correct value of the Prandtl number (this value being two-thirds for rarefied monoatomic 
gases). A description of the transport phenomena on the basis of the BCH model (Byrd-Curtiss-- 
Hirschfelder [13]) equation using only one length of the mean free path for molecules leads, 
however, to the incorrect value 1.0 of the Prandtl number. In the rigorous molecular-kinetic 
theory one postulates that 

t; , = V  -U ' 

so that I i = 1.51i'. This makes it evident that the condition I i' = al i does not yield infor- 
mation about the nature of intermolecular interactions. 

The end resul= of the rigorous molecular-kinetic theory is tha~ the thermodiffusion con- 
stant for rarefied gas mixtures, ~ust like other transport coefficients, can be expressed 
through a set of collision integrals which depend on the intermolecular interaction potential 
[ 1 2 ,  13]: 

J~ := nimiV~ " nz mitnjDi.id i--De 0 In T , V z - - V j  -- Dij Or 9 :=l Or ninj -75r . . . . .  ~- Kv - -  In T . 

In the steady state 

and 

0 0 (hi:n) = - -  KT -- l n T  
Or Or 

* * T~2 d 21n~ O ' n *  Tl~.dtcT ~ 6T':2dC*2 ~, 2 
* * - -  5) dT~2 (1 + 2 d In .-~12 . . . . .  tc~dT12 (6C*12 r d ( l n T ~ - )  2 ' 

where K T = ~/KT,sol.sph. 

According to another study [14], at low temperatures the thermal diffusion of rarefied 
gas mixtures is much more sensitive to intermolecular forces than to other transport 
characteristics. 

The theory of "free flight," which makes it possible to describe the process of separa- 
tion by thermal diffusion, has been developed in two studies [15, 16] and the velocity distri- 
bution of molecules has been defined there by the function 

with W i = /mi/2kTV i. 

: ~ , , = _ z ~ o ) / ~ O ) ( w ~ _ 5 / 2 ) W ~  ( m, ] -1 /~  \ 2kT J v I n T ,  

The difference between diffusion rates is 

V i - - V -  / = 
3 Va-  - i T - ,  - -  

0 

• exp (-- W} e) dW, --  __l_.ltnj : vT,(Wj (W~ --  5/2) 
0 

v:2 0 v f  - 5/2) • 
~F i (~) 

exp (-- W] ) dgj  I V In T =  - -  D7 V T, 
J 

where ~i is the frequency of collisions between molecules 

~;T,(Wi) (W 2 d 5/2) exp (-- Wf) dW~, DI =-  
0 

V i ~--~ 

8 k (';]-~ _ vY~ ). 

3 1/ f f  mt m~ 

In another study [16] the function characterizing the velocity distribution of molecules 
or rather, more precisely, the function Afi/IVln T I, Afi = fi (~) -- fi (~ is shown graphically. 
The two wings of such a distribution function are treated in that study [16] as two molecule 
fluxes moving in opposite directions along the temperature gradient and thus separating by 
thermal diffusion. It is to be noted, nowever, that Afi/IVln T I does not represent a molecule 
flux and that the existence of a "negative" wing of this distribution function (fi (I) < fi (~ 
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indicates a change in the velocity distribution of molecules in the gas mixture having 
occurred as a consequence of the temperature gradient and in turn giving rise to the molecule 
flux. 

In phenomenological thermodynamics of irreversible processes, one deals with nonequi- 
librium transport processes. An advantage of this method is =he possibility of deriving rela- 
tions which characterize the fundamental laws without using the concept of the intermolecular 
in~eraction potential. 

The source of entropy in irreversible heat- and mass-transport processes can be described 
by the expression [13] 

'Z i( 
- -  - -  o . . . .  

. . . .  (J~" Ai)  T z Jq , 
T i Or 

where 

A i 
mi 

and v i is the molar volume. 
form 

OPiOr -}- ~ OT _ I i I ~ ( Opi ~ Oxi ~ Op 
m~ Or ml .= k Onj /r,p,xk Or -k mi Or 

i4:i k=/=i,i 

OT ]v,~j %' Op ]r,x i 

The expressions for heat and mass fluxes can be written in the 

OT JL D~ 
Or P dj, (1) i=t njmj 

l~2 v 
Ji - D~ OT -b ~.~ m~mjDi~dj , (2)  

T Or 9 i=~ 

where 

~.~ ( - n;nj ) O ln p d i -  nj 0 ~  O I n x j  k n~vj , (3) 
p t- O In x1 Or 9 Or 

with 

_ _  nimj di Ox~ ~-(xj--cj) Olnp , c j - -  , 
Or Or 9 

for mixtures of ideal gases and 

p O In x~ ---~r- q- xj ( 1 + In [i) - -  cj L P Or 

for mixtures of real gases or, since 31og f~/3T = --Hj/RT a (Hi denoting the partial molar heat 
of mixing for the j-th component [17, 18]),3in the s~eady s~a~e 

dj - nkTp ( 1 ~  RT~iHJ----xxj--) OXJor (5) 

For a mixture of real gases, therefore, the expressions for heat and mass fluxes contain the 
heat of mixing for each of its components. 

LeE us consider a steady nonequilibrium state of a binary gas mixture inside a closed 
vessel with given concentration and temperature distributions at the walls [2]. The referred 
heat flux is 

Jq = Jq" Oci J i ,  (6)  

where J^ denotes the heat flux in a system of coordinates moving at the mean-mass velocity 
and h denotes the specific enthalpy of the mixture. 
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For a binary mixture we have 

t7 = ~ Jtv ~ -- ~t~ ~ jq _ 
T T z ' 

where ~ denotes the local entropy output and expression (7) can be rewritten as 

o = Ji ( - -  VCO -}-, J~ V (l/T), 
so that the relations 

(7) 

and 

(8) 

l 02g J$ Sq-- St 0h- (9) 
J ; = -  T J'' = 

or,-, o~- Z~VT (lO) 
Jq = J ic~ - - o ~  % + J i  Oc~ 

ji : _pDi2 (~TCiC2 _ ~ _  _~ VCt) ' (ii) 

(12) 
~ ~ ~ g ~ ~ 

will hold true. 

Let us evaluate the gradients of concentration and temperature in the case of steady- 
state thermal diffusion Jt = 0 and a diffusion thermoeffect J' = 0: 

q 

OZg L ~ v T =  0, vT  Jq = Jt~Tcic~ Oc~ VCl----- --o~Tcic 2 - - ~  , - - - -  

_ _  1 ~,~ (c,c~O2gTOc~)_l ~ vc~ _ ~ ,  c~c2 
V T T PDi2 

The first term on the right-hand side of expression (14) is always smaller than the 
second term and can, on account of the smallness of a T, be disregarded [2]. Then 

V T 02g 9D12 

or in molar fractions 

(13) 

(14) 

(15) 

V T Oat nDl2 
- - -  "~  - -  %xtx2 Ox~ ~ 

VX~ 
It has been demonstrated in another study [2] that in mixtures of ideal gases there 

occurs no thermal diffusion and no diffusion thermoeffect, i.e., that both phenomena charac- 
terize the nonideality of the mixture components. 
ment more closely. On the basis of expression (6) 
that in a steady state 

We will examine the proof of this state- 
for the referred heat flux, one can say 

Oh (16) divJ~ = - - J I v  0cl 

When the given_system under consideration comprises an infinitesimally small volume element, 
then function h will be a constant within its boundaries. With the steady-state boundary 
conditions for the temperature or the concentration stipulated, one can find the steady state 
where V(~h/~c~) = 0 and then also div J'a = 0. With the constraint 7(3h/8c~) = 0 imposed, 
it is possible to find the only value of-the ratio VT/Vct at which div J'q = 0, viz., 

V T/VCt -- a=~OTact ( l  7 ) 

This constraint corresponds to the case of the concentration given at all points on the 
boundary surface and the temperature given at any one point whatever, i.e., the quantity 
(8h/8cI)o given at that point. It is possible to find a temperature distribution over the 
other points on the surface which will make 3h/3cx at all those points the same as at that 
starting point: 3~/~c~ = (%~/~c1)o. 
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In any small element it is thus possible to stipulate boundary conditions for the tempera- 
ture or the concentration so that the relations 

Jq = O, d ivJ~  = O, d i v J i  : O, d i v J ~ =  O, 

Z J' v r + Z  --o. 

will hold true inside the element in a steady state. 

According to the last two of these relations~ the two equalities 

O~g X ~ v T  = O~ div Jq = O. J~ : J~o~c~c~ Oc~ 

hold true simultaneously in a steady state. 

It can be demonstrated that in such a steady state there holds true ~.he equality 

o7 
Jq = ~ Ji' 

Applying now the condition of stationarity div Jq = 0, we obtain relation (17). 

The relations J'q = J~TC:Ca 3~g/3c: -- l~7T and J: = -DD~a(~TC~Ca VT/T + 7c~) yield 

(VC~ + =,c,c~ = c,c~ oc~ J 
a~ ~ vT  pD,.~ " 

From expressions (17) and (18) we obtain 

~T 
o2#/Oc,OT 

a~/ac~ 
o~ 2 ctc~ 1 %= ~ - 2 -1 - - T -  + ~ (ctc20"g/Ocd ' 

In molar fractions 

or 

inasmuch as 

where 

o~ h --~4-- ( 19 ) 

~ , ~  - 7  + ~ -  (x,x~O~g/ox~) -~ 
nDlz 

OZh OZg 
Ox--~/ c~• Ox~ (20) 

1 k=lnD,~ 

nD~ ( A ~  ..k Ocv ~ 
- ~ - - - - -  cv Ox~ 7" 

For an ideal mixture we rewrite relation (20) as 

02A PDt2 AM 
Ox~ ~ ~% ;~. M c~x,x~, 

s ince  ~ D ~ / X o - -  XDT'T/Z.~T~ T, henoe ~ h / ~ x ~  -- h ~ / ~ T ~  ~3T/Z~, with ~D T = X. -- 

O~h M 
Ox~ ~ (z T 

We note that expressions (21) and (20) do not have the same form. 

Thus, relation (20), which is used in support of the statement that thermal diffusion 
ceases in mixtures of ideal gases, has not been expressed before [2] in a complete form with 
the %-term inversely porportional to the product ~TKT �9 

and finally 

(21) 
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In another study [19] has been presented the phenomenological theory of steady thermal 
diffusion in multicomponent liquid mixtures. Defining the thermodiffusion constant in the 
form 71n xK/x i = -~<i V in T and using the relation 7 T ~< = -Q<*v In T, where V T = 7 -- VT(~/ 
3T)ni , the author [19] has demonstrated that 

V~Ql--ViQ2 (22) 
%2 = v k T ( l + O l n [ i / O l n x  0 , 

n * where X iQi = T(Op/OT)n i 
i = l  

As an end result of that study [19] has been obtained the expression 

m ~ - - m ~  1 ( v[~ 1) 
a~z = ao 2m , where ao=--~-- �9 kl3---- T - -  . 

for isotope mixtures. The relation ao = i/3(vB/kB' - i) indicates that thermal diffusion 
ceases in ideal mixtures. This incorrect conclusion is a consequence of the Gibbs--Duhem 

M M 

equation having been written incorrectly as n V" [19] instead of niV = 0 , 
i=1  i = 1  

since Vp = ~p/~T VT = 0 and ~p/~T = O. 

Also the relation for the heat of transport is incorrect, therefore, it should be 
M 

= o. 
i=1  

We note that relation (22) characterizes thermal diffusion in a rarefied gas [20] and 
cannot be used for describing the thermal diffusion in liquids. 

In another study [i0] has been determined the effect of nonideality of the mixture 
components on the thermodiffusion ratio. It has been shown, specifically, that this effect 
can be expressed asp 

O l n n / n *  ( 01nn* ) 
n (bo --  2B) + (1 + 2riB) O In T + B,~ 1 + -0 ln-T- (23) 

I f ,  E ~ - -  * _  X i 
K, i t% -- 1 + 2nB + Bs 

where B~i = n i 3B(T, xi)/3x i. 

The quantitYEK ~ characterizes the thermal shift of concentration due to the thermodynamic 
excess function h = --nkT(bo -- 2B). We will now show that~this thermal shift of concentration 
is associated with the heat of mixing of the mixture components. 

Using the methods of thermodynamics of irreversible processes, we obtain an expression 
for the thermodiffusion constant for binary mixtures of real gases in a steady state. Since 
the particle flux is zero, we have 

and from there 

O~l VXi+(U~--hO vT --0, 
Oxi T 

VX~ UT-- ha QT 
V T TO~i/Oxi TO~l/Oxi ' 

where Q~ is the heat of transport for the first component. 

Upon introduction of the thermodiffusion constant ~T I the relation Vx:/x: = --~T~ 
yields 

(24) 

-- ?T/T 

(25) 

%For simplicity, the equation of state was considered in the form pv = kT(l + B(T, xi)/v). 
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For a mixture of real gases this expression can be writ=en as 

~  ( 
kT 1 + Olnx~ 

where (~ in f i / ~ T ) x i  = --Hi/RT a. ~ur thermore ,  

~r,= k T 

Qt 
H~ T ~ ' (26) 

} R T  z a~, 

(27) 

According to expression (27) the thermodiffusion constan= for a real mixture depends on 
the heat of transport Q~ and on the heat of mixin~ H~ for the first component. For an ideal 
mixture 

Relations (27) and (28) yield 

* QT/kT. (28) (X T 

. . . .  a~. RT, (29) 

The preceding analysis comp!e~ely supports Dickei's hypothesis [i0] that the thermal separa- 
tion effect in a gas mixture consists of two components: thermal diffusion, which produces a 
concentration gradient in the gas mixture, and thermal concentration shift in mixtures of 
real gases attributable to thermodynamic excess functions. 

According =o Dickel's classifica=ion, therefore, =hermal diffusion is an effect observed 
in ideal mixtures only. 

Using the methods of thermodynamics of irreversible processes, we will now obtain an 
expression for Ehe =hermodiffusion constant for mixtures of real gases in a nonsteady state. 

In a nonsteady state the particle flux is 

from where 

a~tt V T 0pt VP (30) 
- -  VXl  + Q ~  - x~ , 
a& T a& p 

T Vxl Q~ xtVP/P 
V T -- O~JOxi ~ - - v T / T  - 

Upon introduction of the thermodiffusion constant 8 T, the relation ?x:/x~ = -~T~, VT/T+Vp/p, 
yields 

& QT (31) 
~ ' -  O ~ i / O l n x i  - kT 

For an ideal mixture 

Q? and = 8,*. kr. (32) 8,* -- -ff- 

Then HI = (gT~ --8~)'RT = BTE'RT and the thermodiffusion ratio in a nonsteady state is inserted 

into expression (21). 

Thus, the thermal shift of concentration in a nonsteady state is, indeed, associated with 
the heat of mixing of the mixture components. 

In conclusion, let us examine how nonideality of the mixture components affects the 
contribution of diffusionai heat conduction to conductive heat transfer. 

In the case of a full heat flux [lO] 

" m , ~ q -  ~T =--~, m, kTq- q- k~i=_TL -. (33) 
X~T= T Olnx~ ~ Y N~' i /  O& j aT 

In the case of a reduced hea= flux 

= T \ N ~% n2m*mjDu 
(34) 
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Accordingly, the effect of nonideality of the mixture components is manifested in the 
heat of mixing of the components. 

NOTATION 

p, pressure; ~, density; ~i' length of the mean free path for molecules during transport 
of particles; l' i, length of the mean free path for particles during a transfer of the mean 
velocity; n, molecule concentration; M, molecular weight; I, particle flux; J, mass flux; m, 
mass of a molecule; t, time; Dij, coefficient of interdiffusion for a binary mixture; DiT 
coefficient of thermal diffusion; KT, thermodiffusion ratio; aT, thermodiffusion constant; 
xi, molar fraction of the i-th component in the mixture ~ (r), intermolecular interaction 
potential; r, intermolecular distance; ~(l,s)*, collision integrals; T, temperature; T*, 
referred temperature; R, universal gas constant; k, Boltzmann constant; N, Avogadro's number; 
v, mean velocity of molecules; V, diffusion rate; %i,trans, thermal conductivity associated 
with translatory degrees of freedom; fi(r, v, t), velocity distribution function of molecules; 
n, viscosity; ~i, chemical potential of the i-th component; ci, mass fraction; lo, thermal 
c~nductivity at the initial instant of time; h~, thermal conductivity in the steady state; 
~D T, diffusional component of thermal conductivity; g and h, molar thermodynamic functions; 
g and ~, specific thermodynamic functions; Cp, specific heat; Jq, heat flux; J' , reduced 
heat flux; B, second virial coefficient; U*, transport energy; ~, coefficient o~ thermal 
expansion; 8', coefficient of isothermal compression; and fi, activity coefficient for the 
i-th mixture component. 
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EFFECT OF FEEDPOINT LOCATION FOR A BINARY MIXTURE ON THE 

EFFICIENCY OF SEPARATION IN A THERMAL-DIFFUSION COLUMN 

G. D. Rabinovich, V. P. Ivakhnik, 
and M. A. Bukhtilova 

UDC 621.039.341.6 

We show that there exists an optimal position of the feedpoint of a column at 
which the separation efficiency is maximum and for which, at the same time, the 
energy consumption is a minimum. 

Rozen [i] was the first to solve the problem of the effect produced by the position of 
the feedpoint of the initial binary mixture on the separation efficiency in column apparatuses. 
However, the method used for this was worked out in terms of the theory of rectification, 
which had no real physical analogs in the theory of thermal-diffusion equipment. (For 
example, finding the points of intersection of the operating lines in the liquid-vapor equi- 
librium diagram.) 

In connection with the development of a technology for the thermal-diffusion separation 
of petroleum products, it became necessary to solve the above-mentioned problem of finding 
the optimum coordinate of the feedpolnt of the mixture being separated for a thermal-diffusion 
column, shown schematically in Fig. I. The upper part of the column (I) is the concentrating 
part, while the lower is the stripping part (!I). The input to the column is at the cross 
section whose dimensionless coordinate is yo. For each part of the column, in accordance 
with [2], we can write the transfer equation in the form 

~ ' = H  c ' ( 1 - - c ' )  dy + •  ' 

~ H[ c"(l c') dc" 1 
dy 

The simultaneous solution of this system of equations leads, since it is nonlinear, to 
results which are cumbersome and inconvenient for analysis [3], and for this reason it is 
desirable to resort to linearization of the quadratic term in the form 

c(1--c)= a +  bc, (1) 
which is entirely applicable to the solution of some separation problems. Then, taking account 
of (i), the above system takes the form 

x' = H [ a  + (b + • c' - -  - -  

. s  H[ a + (b-- z O c " - - - -  

dc'] 
dy ' 

dc~ ] 

dy 

(2) 

Since we are considering the stationary state, we know that dx/dy = 0, and from (2) we 
obtain the system 
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